Biosemi Active2腦電系統采用主動電極技術,直流模式采集腦電信號,24bit分辨率,小巧的第二代主動式電極使得Active2產品在采集原始腦電信號方面提供更豐富的細節,Active2產品可提供16/32/64/128/256等多種配置方案,進行多通道同步采集,另提供8通道雙極導聯用于采集EXG信號(如心電,肌電等),滿足您的科研需
產品特點:
· 電池供電,減少工頻干擾,機身小巧,便攜;
· 光纖傳輸數據,數據保真度高;
· 通道數可選:16/32/64/128和256導聯,可擴展性強
· 主動式電極,前端信號放大,保證采集信號可靠以及高效,節省實驗準備時間;
· 直流采集,高采樣率與高帶寬,確保數據采集質量;
· 8kHZ及以上的高采樣率,高輸入范圍;
· 全世界上千家用戶以及6000+sci文章,世界知名。
經典文章節選:
1.Edelman B, Meng J, Suma D, Zurn C, Nagarajan E, Baxter B, Cline C, He B. Noninvasive neuroimaging enhances continuous neural tracking for
robotic device control. Science Robotics 2019;4: eaaw6844.
2.Faller J, Cummings J, Saproo S, Sajda P. Regulation of arousal via online neurofeedback improves human performance in a demanding
sensory-motor task. Proceedings of the National Academy of Sciences2019;116: 6482-6490
3.Broderick MP, Anderson AJ, Di Liberto GM, Crosse MJ, Lalor EC. Electrophysiological correlates of semantic dissimilarity reflect the
comprehension of natural, narrative speech. Current Biology 2018;28: 803-809. e803.
4.Ganesh G, Nakamura K, Saetia S, Tobar AM, Yoshida E, Ando H, Yoshimura N, Koike Y. Utilizing sensory prediction errors for movement intention
decoding: A new methodology. Science advances 2018;4: eaaq0183.
5. Gaspar JM, McDonald JJ. High Level of Trait Anxiety Leads to Salience-Driven Distraction and Compensation. Psychological science 2018;29: 2020-2030.
6.Pizzagalli DA, Webb CA, Dillon DG, Tenke CE, Kayser J, Goer F, Fava M, McGrath P, Weissman M, Parsey R. Pretreatment rostral anterior cingulate
cortex theta activity in relation to symptom improvement in depression:a randomized clinical trial. JAMA psychiatry 2018;75: 547-554.
7. Harris AM, Dux PE, Mattingley JB. Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. Journal of Neuroscience 2018;38: 3092-3101.
8.Breska A, Deouell LY. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not
rhythmic entrainment. PLoS biology 2017;15: e2001665.
9.Lee M, Sehatpour P, Hoptman MJ, Lakatos P, Dias EC, Kantrowitz JT, Martinez AM, Javitt DC. Neural mechanisms of mismatch negativity
dysfunction in schizophrenia. Molecular psychiatry 2017;22: 1585.
10.Perry A, Saunders SN, Stiso J, Dewar C, Lubell J, Meling TR, Solbakk A-K, Endestad T, Knight RT. Effects of prefrontal cortex damage on
emotion understanding: EEG and behavioural evidence. Brain 2017;140: 1086-1099.
11.Murphy PR, Boonstra E, Nieuwenhuis S. Global gain modulation generates time-dependent urgency during perceptual choice in humans. Nature communications 2016;7: 13526.
12.Nelson BD, Perlman G, Klein DN, Kotov R, Hajcak G. Blunted neural response to rewards as a prospective predictor of the development of
depression in adolescent girls. American Journal of Psychiatry 2016;173: 1223-1230.
13.Swann NC, de Hemptinne C, Aron AR, Ostrem JL, Knight RT, Starr PA. Elevated synchrony in P arkinson disease detected with
electroencephalography. Annals of neurology 2015;78: 742-750.
14.O'connell RG, Dockree PM, Kelly SP. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature neuroscience 2012;15: 1729.
15.Zanto TP, Rubens MT, Thangavel A, Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and
working memory. Nature neuroscience 2011;14: 656.
16. Voytek B, Davis M, Yago E, Barceló F, Vogel EK, Knight RT. Dynamic neuroplasticity after human prefrontal cortex damage. Neuron 2010;68: 401-408.